Abstract
In this paper, we report a version of the coupled-coherent-states method which is able to accurately compute the high-order harmonic generation (HHG) spectrum of an electron in a laser field in one dimension by the use of trajectory-guided grids of Gaussian wave packets. It is shown that by periodic reprojection of the wave function and dynamically altering the basis set size, the method can account for a wave function which spreads out to cover a large area in phase space while still keeping computational expense low and ensuring the preservation of coherence of the wave function. The HHG spectra obtained show good agreement with those from a time-dependent Schr\odinger equation solver. We show also that the part of the wave function which is responsible for HHG moves along a periodic orbit which is far from that of classical motion. Although this paper is a proof of principle and therefore focused on a simple one-dimensional system, future generalizations for the multielectron case are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.