Abstract

Unsupervised methods, such as clustering methods, are essential to the analysis of single-cell genomic data. The most current clustering methods are designed for one data type only, such as single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq) or sc-methylation data alone, and a few are developed for the integrative analysis of multiple data types. The integrative analysis of multimodal single-cell genomic data sets leverages the power in multiple data sets and can deepen the biological insight. In this paper, we propose a coupled co-clustering-based unsupervised transfer learning algorithm (coupleCoC) for the integrative analysis of multimodal single-cell data. Our proposed coupleCoC builds upon the information theoretic co-clustering framework. In co-clustering, both the cells and the genomic features are simultaneously clustered. Clustering similar genomic features reduces the noise in single-cell data and facilitates transfer of knowledge across single-cell datasets. We applied coupleCoC for the integrative analysis of scATAC-seq and scRNA-seq data, sc-methylation and scRNA-seq data and scRNA-seq data from mouse and human. We demonstrate that coupleCoC improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. Our method coupleCoC is also computationally efficient and can scale up to large datasets. Availability: The software and datasets are available at https://github.com/cuhklinlab/coupleCoC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.