Abstract

Coupled cluster theory is one of the most accurate electronic structure methods for predicting ground and excited state chemistry. However, the presence of numerical artifacts at electronic degeneracies, such as complex energies, has made it difficult to apply the method in nonadiabatic dynamics simulations. While it has already been shown that such numerical artifacts can be fully removed by using similarity constrained coupled cluster (SCC) theory [J. Phys. Chem. Lett. 2017, 8(19), 4801-4807], simulating dynamics requires efficient implementations of gradients and nonadiabatic couplings. Here, we present an implementation of nuclear gradients and nonadiabatic derivative couplings at the similarity constrained coupled cluster singles and doubles (SCCSD) level of theory, thereby making possible nonadiabatic dynamics simulations using a coupled cluster theory that provides a correct description of conical intersections between excited states. We present a few numerical examples that show good agreement with literature values and discuss some limitations of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.