Abstract

In the past decade, the quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as the method of choice for calculations of strongly correlated molecular systems. Despite its favorable scaling, it is in practice not suitable for computations of dynamic correlation. We present a novel method for accurate "post-DMRG" treatment of dynamic correlation based on the tailored coupled cluster (CC) theory in which the DMRG method is responsible for the proper description of nondynamic correlation, whereas dynamic correlation is incorporated through the framework of the CC theory. We illustrate the potential of this method on prominent multireference systems, in particular, N2 and Cr2 molecules and also oxo-Mn(Salen), for which we have performed the first post-DMRG computations in order to shed light on the energy ordering of the lowest spin states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call