Abstract

A multiscale approach with roots in electronic structure calculations relies on the good description of intermolecular forces. In this study we lay the foundations for a condensed phase treatment based on the electronic structure of hydrogen fluoride on a very high level of theory. This investigation comprises cluster calculations in a static quantum chemical approach employing density functional theory, second order Møller-Plesset perturbation theory (MP2) and the coupled cluster singles, doubles with perturbative triples method in combination with several basis sets as well as at the complete basis set limit. The clusters we considered are up to 12 monomer units large and consist of ring and chain structures. We find a good agreement of the intramolecular distance obtained from the MP2 approach and the largest basis set. The binding energy of the hydrogen fluoride dimer calculated from coupled cluster at the basis set limit agrees excellently with experiment, whereas the calculated frequencies at all levels agree reasonably well with different experimental values. Large cooperative effects are observed for the ring structures as compared to the chain clusters. The energy per monomer unit indicates the most stable structures to be the ring clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call