Abstract

Freshening of high latitude surface waters can change the large-scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large-scale response establishing an oceanic "teleconnection" with time scales of years to centuries. To study these feedbacks, a coupled atmosphere-ocean-sea ice model consisting of a two dimensional atmospheric energy and moisture balance model (EMBM) coupled to a thermodynamic sea ice model and an ocean general circulation model is utilised. The coupled model reproduces many aspects of the present oceanic circulation. We also investigate the climate impact of changes in fresh water balance during an ice age initiation. In this experiment part of the precipitation over continents is stored within continental ice sheets. During the buildup of ice sheets the oceanic stratification in the North Atlantic is weakened by a reduced continental run-off leading to an enhanced thermohaline circulation. Under these conditions salinity is redistributed such that deep water is more saline than under present conditions. Once the ice sheets built up, we simulate an ice age climate without net fresh water storage on the continents. In this case the coupled model reproduces the shallow and weak overturning cell, an ice edge advance insulating the upper ocean, and many other aspects of the glacial circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.