Abstract

Intrinsically disordered proteins organize interaction networks in the cell in many regulation and signaling processes. These proteins often gain structure upon binding to their target proteins in multistep reactions involving the formation of both secondary and tertiary structure. To understand the interactions of disordered proteins, we need to understand the mechanisms of these coupled folding and binding reactions. We studied helix formation in the binding of the molten globule-like nuclear coactivator binding domain and the disordered interaction domain from activator of thyroid hormone and retinoid receptors. We demonstrate that helix formation in a rapid binding reaction can be followed by stopped-flow synchrotron-radiation circular dichroism (CD) spectroscopy and describe the design of such a beamline. Fluorescence-monitored binding experiments of activator of thyroid hormone and retinoid receptors and nuclear coactivator binding domain display several kinetic phases, including one concentration-independent phase, which is consistent with an intermediate stabilized at high ionic strength. Time-resolved CD experiments show that almost all helicity is formed upon initial association of the proteins or separated from the encounter complex by only a small energy barrier. Through simulation of mechanistic models, we show that the intermediate observed at high ionic strength likely involves a structural rearrangement with minor overall changes in helicity. Our experiments provide a benchmark for simulations of coupled binding reactions and demonstrate the feasibility of using synchrotron-radiation CD for mechanistic studies of protein-protein interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.