Abstract

This paper presents a dynamical model of a fluid-conveying pipe spinning about an eccentric axis. The coupled bi-flexural–torsional free vibration and stability are analyzed for such a doubly gyroscopic system. The partial differential equations of motions are derived by the extended Hamilton principle, and are then truncated by a 4-term Galerkin technique. The frequency and energy evolutions and representative mode shapes in the two transverse directions and torsional direction are investigated to unveil the essential dynamical attributes of the system. It is indicated that the stability of the present system mainly depends on spinning speed, flow velocity and eccentricity, while the torsional frequencies are almost immune to the flow velocity. The pipe reveals ‘traveling-wave’ modal vibrations in both transverse directions, and a general ‘standing-wave’ modal vibration in the torsional direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.