Abstract

A new coupled axial-shear numerical model is proposed to simulate the response of typical Cross Laminated Timber (CLT) connections under general loading conditions. The general model is then specialized for hold-down connections. To this aim, a series of experimental tests was first designed and performed at University of Bologna, in order to provide for the necessary data for the characterization of the numerical model. The main parameters required to define the constitutive law of the model are here evaluated by means of linear regression analyses performed on the experimental data. Both monotonic and cyclic test series are taken into account to calibrate and then validate the proposed numerical model, demonstrating its effectiveness in representing the coupled response of hold-down connections under simultaneous application of axial and shear forces. Finally, the response of a whole CLT panel subjected to a cyclic top displacement history is studied, confirming the need of considering axial-shear interaction in modelling of numerical connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.