Abstract

The eastern Dharwar craton (EDC) of the southern Indian Shield hosts five geochronologically distinct Paleoproterozoic mafic dyke swarms emplaced at 2.37, 2.21, 2.18, 2.08 and 1.89 Ga. Trace element geochemical data available for these dykes display the ‘arc signals’ viz., negative Nb-Ta anomalies and elevated Zr/Nb, Th/Yb and Th/Ta values, which are conventionally interpreted to represent involvement of subduction in their genesis. It is shown that these ‘arc signals’ resulted from coupled assimilation and fractional crystallization (AFC) processes that modified these mantle-derived melts. Since, mafic dykes under study are highly evolved, an attempt has been made to estimate (using PRIMELTS2.xls software) the composition of the primary magma from the most primitive sample available from the 2.21 and 2.37 Ga swarms. The mantle potential temperature derived from the estimated primary magma compositions revealed anomalously hot mantle source regions compared to the known ambient upper mantle temperatures during Paleoproterozoic, thus implying the possible involvement of thermal plumes in their genesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.