Abstract

Designers of the aero engines are in quest of maintaining the pressure as high as possible at the face of the compressor, with air velocity not higher than 0.8 Mach. Reduction of the flow from supersonic to such speed is combined with pressure reduction. This paper presents results from coupled techniques to solve for the flow field of double wedge spiked supersonic intake. The selected spike has 4° forebody wedge angle and the second ramp angle is 8°. The external part of the flow was solved analytically while the internal part was solved numerically by finite volume technique. The analysis was carried out at different Mach numbers (1.4, 1.8, 2.2, 2.4, and 3) and different angles of attack (0°, 6°, and 12°). The procedure is validated and the results are presented in terms of the pressure recovery at the face of the compressor. The results have shown that generally the pressure recovery decreases by increasing of incidence angle. The non-zero incidence was found to produce noticeable difference in pressure distribution at the face of the compressor. This became considerably effective at incidences leading to detached shocks at the leading edge of the spike.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.