Abstract
The focus of this study is the analysis of the onset of a shear band in saturated soils under biaxial stress conditions taking into account bifurcation in both pore pressure and soil skeleton. By considering the saturated soil as a two-phase medium, the inhomogeneous displacement and pore pressure fields are assumed to be nonlinear and satisfy the continuity conditions of displacements, displacement gradients and excess pore pressure on the boundaries of the band. It is shown that bifurcation may take place in loose, contractive soils in the form of two-phase diffuse mode or localized mode of soil skeleton deformation. For low permeability saturated soils, the onset of a shear band occurs at peak friction, with the shear band parallel to Coulomb's failure plane. Numerical examples using a simple stress–strain model are given to demonstrate the occurrence of the onset of a shear band and its inclination, as a function of the void ratio and the initial consolidation pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.