Abstract

Summary In this paper a new framework is introduced to develop a coupled active and reactive market in distribution networks. Distributed energy resources (DERs) such as synchronous machine–based distributed generations and wind turbines offer their active and reactive powers to the proposed market. For the considered DERs, multicomponent reactive power bidding structures are introduced based on their capability curves. Also, the hourly speed variations of wind turbines are considered in the proposed model. A distribution company buys active and reactive powers from a wholesale market and sells them via this market. The demand side is active, and responsive loads or aggregators can participate in the market using a demand bidding/buyback program. The objective function of the proposed market is to minimize the active and reactive power costs of DERs and distribution companies, the penalty cost of CO2 emission, and the cost of running a demand bidding/buyback program. The effectiveness of the proposed method is examined on a 22-bus 20-kV radial distribution test system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.