Abstract
Action recognition and pose estimation are two closely related topics in understanding human body movements; information from one task can be leveraged to assist the other, yet the two are often treated separately. We present here a framework for coupled action recognition and pose estimation by formulating pose estimation as an optimization over a set of action-specific manifolds. The framework allows for integration of a 2D appearance-based action recognition system as a prior for 3D pose estimation and for refinement of the action labels using relational pose features based on the extracted 3D poses. Our experiments show that our pose estimation system is able to estimate body poses with high degrees of freedom using very few particles and can achieve state-of-the-art results on the HumanEva-II benchmark. We also thoroughly investigate the impact of pose estimation and action recognition accuracy on each other on the challenging TUM kitchen dataset. We demonstrate not only the feasibility of using extracted 3D poses for action recognition, but also improved performance in comparison to action recognition using low-level appearance features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.