Abstract
Realistic two-valued potential energy surfaces for the reaction C(3P) + CH(X2Π) → C2 + H have been constructed from a set of high level ab initio data describing the first two 2A′ electronic states of the C2H system. These states have linear equilibrium configurations, known as the X 2Σ+ and A2Π states, and are coupled by a conical intersection. They lead to the formation of C2(X1Σ+ g) and C2(a3Πu) considering an adiabatic dissociation process. The ab initio calculations are of the multireference configuration interaction variety and were carried out using a polarized triple-zeta basis set. Using the ab initio adiabatic energies and the matrix elements of the dipole moment, a 2 × 2 diabatic representation of the electronic Hamiltonian was built. Each element of this Hamiltonian matrix was expressed within the double many-body expansion (DMBE) scheme which is based, in this case, on the extended Hartree-Fock approximate correlation energy model (EHFACE). The analytical adiabatic potential energy surfaces are then obtained as the eigenvalues of this matrix, and display correctly the Σ/Π conical intersection. Moreover, the non-adiabatic couplings given by our analytical model are compared with the ab initio ones, and good qualitative agreement is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.