Abstract

We present a new approach for modeling high-frequency losses in transverse anisotropy magnetic tapes by solving a 1-D eddy-current problem coupled to a micromagnetic constitutive law. Contrary to earlier models, the model is derived using a magnetic flux-density conforming formulation. The model allows coupling the tape-level magnetization process to a 2-D finite element model for analyzing larger cores by homogenizing the tape layers. The developed model predicts the high-frequency losses in a good agreement with previously presented measured results and models, demonstrating potential for increased accuracy in the calculation of losses in tape-wound cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.