Abstract

Pluvial flooding in urban areas drained by storm sewer networks is characterized by surcharge-induced inundation. Urban inundation models need to reproduce the complex interaction between the sewer flow and the surcharge-induced inundation to make reasonable predictions of the likely flood damage in urban areas. In the framework of the present work, the storm sewer model SWMM5 and a newly developed two-dimensional (2D) noninertia overland-flow model have been coupled to simulate the interaction between the sewer system and the urban floodplain. The solution of the 2D model is on the basis of an alternating direction implicit scheme that solves the 2D noninertia free-surface shallow-water equations. For accuracy reasons, the time step is limited and controlled by the use of iteration to home-in on an accurate solution at each sweep. The dynamic interaction between the two models is bidirectional, and the interacting discharges are calculated according to the water level differences between the flows in the sewer system network and aboveground flows. The paper presents details of the newly developed 2D model and describes the way in which the model was coupled with a one-dimensional (1D) sewer network model (SWMM5). The models were tested on one hypothetical case study and one real-life case study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call