Abstract

BackgroundCanine vector-borne diseases (CVBD) have become a major concern for canine and human public health. The aim of the study described here is to add epidemiological data regarding four pathogens responsible for CVBD, namely anaplasmosis, borreliosis, dirofilariosis and ehrlichiosis in a national survey conducted in Mexico.MethodsSeventy-four veterinary centres located in 21 federal Mexican states were asked to test dogs with clinical signs suspect for CVBD and healthy dogs, for detection of Dirofilaria immitis antigen and antibodies against Anaplasma spp., Borrelia burgdorferi (sensu lato) and Ehrlichia canis using the SNAP® 4DX® from IDEXX® Laboratories.ResultsA total of 1706 dogs were tested, including 943 apparently healthy and 722 CVBD-suspect dogs. Infected dogs were 36.7 %. The highest percentages of infection with E. canis (51.0 %) and Anaplasma spp. (16.4 %) were obtained in the northwestern region, while D. immitis was most frequently found in the northeastern region of the country (8.9 %). Four dogs from the northwestern, northeastern, eastern and southeastern regions, respectively, were positive for B. burgdorferi (sensu lato). Northcentral regions showed lowest overall prevalence of infection (2.4 %). Co-infections were detected in 8.8 % of the dogs tested. Statistically significant lower positivity was found among dogs aged less than one year (23.2 %) and small-sized dogs (27.6 %), while higher prevalence of infection was found in dogs living outdoors (42.0 %), dogs with detectable tick infestation (43.3 %) and dogs that received treatment for tick-transmitted infections (58.8 %). Seropositivity was a risk factor for the presence of clinical signs as follows: Anaplasma spp. (OR = 2.63; 95 % CI: 1.88–3.67; P < 0.0001), D. immitis (OR = 2.52; 95 % CI: 1.61–3.95; P < 0.0001), E. canis (OR = 3.58; 95 % CI: 2.88–4.45; P < 0.0001), mixed infections (OR = 4.08; 95 % CI: 2.79–5.96; P < 0.0001), one or more agents (OR = 3.58; 95 % CI: 2.91–4.42; P < 0.0001).ConclusionsCanine serological evidence supports that dogs from Mexico are at risk of acquiring Anaplasma spp., D. immitis and/or E. canis, while B. burgdorferi (sensu lato) transmission is minimal in the country. Practitioners play a fundamental role in the detection and control of these diseases to protect dogs and humans.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1686-z) contains supplementary material, which is available to authorized users.

Highlights

  • Canine vector-borne diseases (CVBD) have become a major concern for canine and human public health

  • A diverse range of pathogens transmitted by haematophagous arthropods, mainly ticks and mosquitoes, cause CVBD [5], which have become a major focus of interest due to their importance to canine and human public health

  • Veterinarians were asked to test dogs with clinical signs suspect for anaplasmosis, borreliosis, dirofilariosis and/or ehrlichiosis, and a similar number of apparently healthy dogs, under physical examination, from April 2011 to January 2012

Read more

Summary

Introduction

Canine vector-borne diseases (CVBD) have become a major concern for canine and human public health. The aim of the study described here is to add epidemiological data regarding four pathogens responsible for CVBD, namely anaplasmosis, borreliosis, dirofilariosis and ehrlichiosis in a national survey conducted in Mexico. A diverse range of pathogens transmitted by haematophagous arthropods, mainly ticks and mosquitoes, cause CVBD [5], which have become a major focus of interest due to their importance to canine and human public health. Mainly neutrophils, causing granulocytic anaplasmosis in mammalian hosts, including dogs and humans [9]. Anaplasma platys, transmitted by R. sanguineus (sensu lato) infects canine platelets and is responsible for the infectious canine cyclic thrombocytopenia. Pathogenicity is generally low but A. platys may play a role in co-infection with other arthropod-borne diseases [10]. The close molecular relationship between A. phagocytophilum and A. platys limits the serological differentiation between both agents due to cross-reactions [11]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.