Abstract

Background, Aims and Scope Several authors have shown that spatially derived characterisation factors used in life cycle impact assessment (LCIA) can differ widely between different countries in the context of regional impact categories such as acidification or terrestrial eutrophication. Previous methodology studies in Europe have produced country-dependent characterisation factors for acidification and terrestrial eutrophication by using the results of the EMEP and RAINS models and critical loads for Europe. The unprotected ecosystem area (UA) is commonly used as a category indicator in the determination of characterisation factors in those studies. However, the UA indicator is only suitable for large emission changes and it does not result in environmental benefits in terms of characterisation factors if deposition after the emission reduction is still higher than the critical load. For this reason, there is a need to search for a new category indicator type for acidification and terrestrial eutrophying in order to calculate site-dependent characterisation factors. The aim of this study is to explore new site-dependent characterisation factors for European acidifying and eutrophying emissions based on accumulated exceedance (AE) as the category indicator, which integrates both the exceeded area and amount of exceedance. In addition, the results obtained for the AE and UA indicators are compared with each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.