Abstract

The Simson line property is normally associated with points on the circumcircle of a triangle. It is embodied by the following theorem.Given any triangle ABC and a point P in the plane of the triangle, if perpendiculars from P on to the sides BC, CA, AB meet those sides at L, M, N respectively then L, M, N are collinear if and only if P lies on the circumcircle of triangle ABC. The line LMN is then known as the Simson line of P.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.