Abstract
One of the bedrock theorems of mathematics is the statement that a real polynomial of degree n has at most n real zeros. Probably the best-known proof is the algebraic one, by factorisation. But there is also a pleasant analytic proof, by deduction from Rolle’s theorem.A slightly different question is how many positive zeros a polynomial has. Here the basic result is known as ‘Descartes′ rule of signs’. It says that the number of positive zeros is no more than the number of sign changes in the sequence of coefficients. Descartes included it in his treatise La Géométrie which appeared in 1637. It can be proved by a method based on factorisation, but, again, just as easily by deduction from Rolle’s theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.