Abstract
We consider Galileon models on curved spacetime, as well as the counterterms introduced to maintain the second-order nature of the field equations of these models when both the metric and the scalar are made dynamical. Working in a gauge invariant framework, we first show how all the third-order time derivatives appearing in the field equations -- both metric and scalar -- of a Galileon model or one defined by a given counterterm can be eliminated to leave field equations which contain at most second-order time derivatives of the metric and of the scalar. The same is shown to hold for arbitrary linear combinations of such models, as well as their k-essence-like/Horndeski generalizations. This supports the claim that the number of degrees of freedom in these models is only 3, counting 2 for the graviton and 1 for the scalar. We comment on the arguments given previously in support of this claim. We then prove that this number of degrees of freedom is strictly less that 4 in one particular such model by carrying out a full-fledged Hamiltonian analysis. In contrast to previous results, our analyses do not assume any particular gauge choice of restricted applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.