Abstract

We develop a first-principles approach to compute the counting statistics in the ground state of N noninteracting spinless fermions in a general potential in arbitrary dimensions d (central for d>1). In a confining potential, the Fermi gas is supported over a bounded domain. In d=1, for specific potentials, this system is related to standard random matrix ensembles. We study the quantum fluctuations of the number of fermions N_{D} in a domain D of macroscopic size in the bulk of the support. We show that the variance of N_{D} grows as N^{(d-1)/d}(A_{d}logN+B_{d}) for large N, and obtain the explicit dependence of A_{d},B_{d} on the potential and on the size of D (for a spherical domain in d>1). This generalizes the free-fermion results for microscopic domains, given in d=1 by the Dyson-Mehta asymptotics from random matrix theory. This leads us to conjecture similar asymptotics for the entanglement entropy of the subsystem D, in any dimension, supported by exact results for d=1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.