Abstract
Detecting and counting the number of copies of certain subgraphs (also known as network motifs or graphlets), is motivated by applications in a variety of areas ranging from Biology to the study of the World-Wide-Web. Several polynomial-time algorithms have been suggested for counting or detecting the number of occurrences of certain network motifs. However, a need for more efficient algorithms arises when the input graph is very large, as is indeed the case in many applications of motif counting.In this paper we design sublinear-time algorithms for approximating the number of copies of certain constant-size subgraphs in a graph G. That is, our algorithms do not read the whole graph, but rather query parts of the graph. Specifically, we consider algorithms that may query the degree of any vertex of their choice and may ask for any neighbor of any vertex of their choice. The main focus of this work is on the basic problem of counting the number of length-2 paths and more generally on counting the number of stars of a certain size. Specifically, we design an algorithm that, given an approximation parameter 0
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.