Abstract

We provide another proof that the signed count of the real J-holomorphic spheres (or J- holomorphic discs) passing through a generic real configuration of k points is independent of the choice of the real configuration and the choice of J, if the dimension of the Lagrangian submanifold L (fixed point set of involution) is two or three, and also if we assume L is orient able and relatively spin. We also assume that M is strongly semi-positive. This theorem was first proved by Welschinger in a more general setting, and we provide more natural approach using the signed degree of an evaluation map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.