Abstract

This dissertation is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Coprimeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transfered to criteria for non-catastrophicity of convolutional codes. We calculate the probability that specially structured polynomial matrices are right prime. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional codes is non-catastrophic. Moreover, the corresponding probabilities are calculated for other networks of linear systems and convolutional codes, such as series connection. Furthermore, the probabilities that a convolutional codes is MDP and that a clock code is MDS are approximated. Finally, we consider the probability of finding a solution for a linear network coding problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.