Abstract
For each value of k ⩾ 2 , we determine the number p n of ways of dissecting a polygon in the projective plane into n subpolygons with k + 1 sides each. In particular, if k = 2 we recover a result of Edelman and Reiner (1997) on the number of triangulations of the Möbius band having n labelled points on its boundary. We also solve the problem when the polygon is dissected into subpolygons of arbitrary size. In each case, the associated generating function ∑ p n z n is a rational function in z and the corresponding generating function of plane polygon dissections. Finally, we obtain asymptotic estimates for the number of dissections of various kinds, and determine probability limit laws for natural parameters associated to triangulations and dissections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.