Abstract
We study cross-graph charging schemes for graphs drawn in the plane. These are charging schemes where charge is moved across vertices of different graphs. Such methods have recently been used to obtain various properties of triangulations that are embedded in a fixed set of points in the plane. We generalize this method to obtain results for various other types of graphs that are embedded in the plane. Specifically, we obtain a new bound ofO*(187.53N) (where theO*(⋅) notation hides polynomial factors) for the maximum number of crossing-free straight-edge graphs that can be embedded in any specific set ofNpoints in the plane (improving upon the previous best upper bound 207.85Nin Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl [14]). We also derive upper bounds for numbers of several other types of plane graphs (such as connected and bi-connected plane graphs), and obtain various bounds on the expected vertex-degrees in graphs that are uniformly chosen from the set of all crossing-free straight-edge graphs that can be embedded in a specific point set.We then apply the cross-graph charging-scheme method to graphs that allow certain types of crossings. Specifically, we consider graphs with no set ofkpairwise crossing edges (more commonly known ask-quasi-planar graphs). Fork=3 andk=4, we prove that, for any setSofNpoints in the plane, the number of graphs that have a straight-edgek-quasi-planar embedding overSis only exponential inN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.