Abstract

In this note, we consider the problem of counting (cycle) successions, i.e., occurrences of adjacent consecutive elements within cycles, of a permutation expressed in the standard form. We find an explicit formula for the number of permutations having a prescribed number of cycles and cycle successions, providing both algebraic and combinatorial proofs. As an application of our ideas, it is possible to obtain explicit formulas for the joint distribution on Sn for the statistics recording the number of cycles and adjacencies of the form j,j+d where d>0 which extends earlier results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.