Abstract
We show that there is a polynomial space algorithm that counts the number of perfect matchings in an n-vertex graph in O*(2n/2) ⊂ O(1.415n) time. (O*(f(n)) suppresses functions polylogarithmic in f(n)). The previously fastest algorithms for the problem was the exponential space O*(((1 + √5)/2)n) ⊂ O(1.619n) time algorithm by Koivisto, and for polynomial space, the O(1.942n) time algorithm by Nederlof. Our new algorithm's runtime matches up to polynomial factors that of Ryser's 1963 algorithm for bipartite graphs. We present our algorithm in the more general setting of computing the hafnian over an arbitrary ring, analogously to Ryser's algorithm for permanent computation. We also give a simple argument why the general exact set cover counting problem over a slightly superpolynomial sized family of subsets of an n element ground set cannot be solved in O*(2(1 − ε1)n) time for any ∊1 > 0 unless there are O*(2(1 − ε1)n) time algorithms for computing an n × n 0/1 matrix permanent, for some ∊2 > 0 depending only on ∊1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.