Abstract
We propose an integer programming method for estimating the instantaneous count of pedestrians crossing a line of interest (LOI) in a video sequence. Through a line sampling process, the video is first converted into a temporal slice image. Next, the number of people is estimated in a set of overlapping sliding windows on the temporal slice image, using a regression function that maps from local features to a count. Given that the count in a sliding window is the sum of the instantaneous counts in the corresponding time interval, an integer programming method is proposed to recover the number of pedestrians crossing the LOI in each frame. Integrating over a specific time interval yields the cumulative count of pedestrians crossing the line. Compared with current methods for line counting, our proposed approach achieves state-of-the-art performance on several challenging crowd video data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.