Abstract

Crossovers (COs), that drive genetic exchange between homologous chromosomes, are strongly biased toward subtelomeric regions in plant species. Manipulating the rate and positions of COs to increase the genetic variation accessible to breeders is a longstanding goal. Use of genome editing reagents that induce double-stranded breaks (DSBs) or modify the epigenome at desired sites of recombination, and manipulation of CO factors, are increasingly applicable approaches for achieving this goal. These strategies for 'controlled recombination' have potential to reduce the time and expense associated with traditional breeding, reveal currently inaccessible genetic diversity, and increase control over the inheritance of preferred haplotypes. Considerable challenges to address include translating knowledge from models to crop species and determining the best stages of the breeding cycle at which to control recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call