Abstract

We study descriptive complexity of counting complexity classes in the range from #P to #*NP. A corollary of Fagin's characterization of NP by existential second-order logic is that #P can be logically described as the class of functions counting satisfying assignments to free relation variables in first-order formulae. In this paper we extend this study to classes beyond #P and extensions of first-order logic with team semantics. These team-based logics are closely related to existential second-order logic and its fragments, hence our results also shed light on the complexity of counting for extensions of first-order logic in Tarski's semantics. Our results show that the class #*NP can be logically characterized by independence logic and existential second-order logic, whereas dependence logic and inclusion logic give rise to subclasses of #*NP and #P, respectively. We also study the function class generated by inclusion logic and relate it to the complexity class TotP, which is a subclass of #P. Our main technical result shows that the problem of counting satisfying assignments for monotone Boolean Sigma_1-formulae is #*NP-complete with respect to Turing reductions as well as complete for the function class generated by dependence logic with respect to first-order reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call