Abstract
BackgroundThis work presents an experience done to evaluate the number of very small objects in the field of view of a stereo microscope, which are usually counted by direct observation, with or without the use of grids as visual aids. We intend to show that deep learning recent algorithms like YOLO v5 are adequate to use in the evaluation of the number of objects presented, which can easily reach the 1000 s. This kind of algorithm is open-source software, requiring a minimum of skills to install and run on a regular laptop. We further intend to show that the robustness of these kinds of approaches using convolutional neural networks allowed for the use of images of less quality, such as the images acquired with a cell phone.ResultsThe results of training the algorithm and counting microalgae in cell phone images were assessed through human curation in a set of test images and showed a high correlation, showing good precision and accuracy in detections.ConclusionsThis is a low-cost alternative available worldwide to many more facilities than expensive cameras and high-maintenance rigid set-ups, along with software packages with a slow learning curve, therefore enlarging the scope of this technique to areas of knowledge where the conditions of laboratory and human work are a limiting factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.