Abstract

We prove a tight upper bound on the independence polynomial (and total number of independent sets) of cubic graphs of girth at least 5. The bound is achieved by unions of the Heawood graph, the point/line incidence graph of the Fano plane.We also give a tight lower bound on the total number of independent sets of triangle-free cubic graphs. This bound is achieved by unions of the Petersen graph.We conjecture that in fact all Moore graphs are extremal for the scaled number of independent sets in regular graphs of a given minimum girth, maximizing this quantity if their girth is even and minimizing if odd. The Heawood and Petersen graphs are instances of this conjecture, along with complete graphs, complete bipartite graphs, and cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.