Abstract

A Hamilton cycle in a directed graph $G$ is a cycle that passes through every vertex of $G$. A Hamiltonian decomposition of $G$ is a partition of its edge set into disjoint Hamilton cycles. In the late $60$s Kelly conjectured that every regular tournament has a Hamilton decomposition. This conjecture was recently settled by Kuhn and Osthus, who proved more generally that every $r$-regular $n$-vertex oriented graph $G$ (without antiparallel edges) with $r=cn$ for some fixed $c>3/8$ has a Hamiltonian decomposition, provided $n=n(c)$ is sufficiently large. In this paper we address the natural question of estimating the number of such decompositions of $G$ and show that this number is $n^{(1-o(1))cn^2}$. In addition, we also obtain a new and much simpler proof for the approximate version of Kelly's conjecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.