Abstract

We consider a non compact, complete manifold {\bf{M}} of finite area with cuspidal ends. The generic cusp is isomorphic to ${\bf{X}}\times ]1,+\infty [$ with metric $ds^2=(h+dy^2)/y^{2\delta}.$ {\bf{X}} is a compact manifold with nonzero first Betti number equipped with the metric $h.$ For a one-form $A$ on {\bf{M}} such that in each cusp $A$ is a non exact one-form on the boundary at infinity, we prove that the magnetic Laplacian $-\Delta_A=(id+A)^\star (id+A)$ satisfies the Weyl asymptotic formula with sharp remainder. We deduce an upper bound for the counting function of the embedded eigenvalues of the Laplace-Beltrami operator $-\Delta =-\Delta_0 .$

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.