Abstract

This research related to registration of the fast neutrons with a detector based on the inorganic KDP: TL+ mono crystal (KH2PO4 potassium dihydrogen phosphate) and plastic UPS-923A. The crystal of the KDP: TL+ detector grown from a water solution by the method of lowering the temperature. The high concentration of hydrogen nuclei in the KDP: TL+ crystal grid makes it possible to detect neutron radiation with an efficiency comparable to polystyrene scintillators. KDP: TL+ crystals have a high radiation resistance (up to 1010 neutrons/cm2), which significantly expands the spectrum of their application in high-energy physics applications, intense neutron fields. In this work, we used a technique for recording the detector response in the photon counting mode and pulse filtering mode. Since the detector operates on the principle of detecting gamma quanta from the reactions (n, n 'γ), (n, n' γ)res, (n, γ)cap and others, this makes it possible (in a filtering mode) to isolate the mechanisms of cascade generation processes in the volume of the detector caused by secondary gamma quanta from excited states of compound nuclei. The gamma quanta of the elastic scattering reaction (n, n' γ) for the KDP: TL+ scintillator nuclei are the start of the cascade process of the discharge of excited isomeric states of the input, intermediate, and final nuclei. Measurements of the detection efficiency of fast neutrons were carried out with a KDP: TL+ crystal of size 18x18x42 mm in spherical geometry. The obtained detector reviews in units of impulse / particle for sources and 239Pu-Be and 137Cs were 3.57 and 1.44. In this case, a broadband path with a speed of 7 ns was used. In addition, the counting efficiency of the narrow-band tract measured simultaneously with a processing time of 1 μs and 6.4 μs. The received response from the KDP: TL+ detector (in units of impulse/particle) for both sources 239Pu-Be and 137Cs was 0.09 and 0.00029. The n/γ ratio coefficient was 310. The given measurements of a polystyrene-based scintillator size of 40×40×40 mm. The received response in a single photon-counting mode from the plastic detector (in units of impulse/particle) for both sources 239Pu-Be and 137Cs was 19.4 and 3.9. The n/γ ratio coefficients for detectors are also given: KDP: TL+ - 2.47 and UPS-923A - 4.97 in the 7 ns mode. The statistical error in measurements of the neutron detection efficiency was about ~ 5%.

Highlights

  • COUNTING EFFICIENCY AND NEUTRON/GAMMA RATIO FOR KDP: TL+ AND UPS-923A SCINTILLATORS IN A SINGLE PHOTON DETECTION MODE

  • This research related to registration of the fast neutrons with a detector based on the inorganic KDP: TL+ mono crystal (KH2PO4 potassium dihydrogen phosphate) and plastic UPS-923A

  • This paper presents the experimental results of a study of the efficiency of fast neutron detection in water-soluble crystals in the photon-counting mode and pulse timefiltering mode

Read more

Summary

Introduction

COUNTING EFFICIENCY AND NEUTRON/GAMMA RATIO FOR KDP: TL+ AND UPS-923A SCINTILLATORS IN A SINGLE PHOTON DETECTION MODE. If a neutron detector uses only the one mechanism of inelastic scattering, in which one the secondary gamma-quanta are generated due to the discharge of single-particle excitations of nuclei, this allows the use of a narrow-band detection path (1 μs) In this case, the counted efficiency coincides with the energy of the registration efficiency, which cannot exceed one. The mechanism of inelastic scattering of fast neutrons is a starting process that can be as a trigger for the process of resonant scattering, radiation capture and secondary nuclear reactions In this case, excited states in the nuclei of the crystals under study generate cascades of gamma rays with energies ranging from E ~ 2-3 MeV to units of keV.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call