Abstract

The electrocatalytic sulfur reduction reaction (SRR) would allow the production of renewable high-capacity rechargeable lithium-sulfur (Li-S) batteries using sustainable and nontoxic elemental sulfur as a cathode material, but its slow reaction rate causes a serious shuttle effect and dramatically reduces the capacity. We found that a catalyst composed of Pd nanoparticles supported by ordered mesoporous carbon (Pd/OMC) had a high reaction rate in the SRR, and a Li-S battery assembled with this catalyst had a low shuttle constant of 0.031 h-1 and a high-rate performance with a specific capacity of 1527 mAh g-1 at 0.1 C which is close to the theoretical value. The high activity of Pd/OMC with a d-orbital vacancy of 0.87 e was predicted from a volcano relationship between the d charge for the metal and the adsorption activation entropy and reaction rate for the SRR by examining Pd, Au, Pt, Rh, and Ru transition-metal nanocatalysts. The strategy of using a single electronic structure descriptor to design high-efficiency SRR catalysts has suggested a way to produce practical Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call