Abstract
The class NC1 of problems solvable by bounded fan-in circuit families of logarithmic depth is known to be contained in logarithmic space L, but not much about the converse is known. In this paper we examine the structure of classes in between NC1 and L based on counting functions or, equivalently, based on arithmetic circuits. The classes PNC1 and C=NC1, defined by a test for positivity and a test for zero, respectively, of arithmetic circuit families of logarithmic depth, sit in this complexity interval. We study the landscape of Boolean hierarchies, constant-depth oracle hierarchies, and logarithmic-depth oracle hierarchies over PNC1 and C=NC1. We provide complete problems, obtain the upper bound L for all these hierarchies, and prove partial hierarchy collapses--in particular, the constant-depth oracle hierarchy over PNC1 collapses to its first level PNC1, and the constant-depth oracle hierarchy over C=NC1 collapses to its second level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.