Abstract

ABSTRACT We use correlative field studies and high-resolution multispectral remote sensing data from the WorldView-2 instrument to estimate the abundance of photosynthetically active biomass (photoautotrophs consisting primarily of microbial mats and mosses) in Canada Stream in Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica. In situ field investigations were performed to (1) acquire ground validation targets for atmospherically correcting satellite imagery, (2) derive spectra of “pure” geologic and biological endmembers, (3) estimate photoautotroph cover from remote sensing data, and (4) convert these coverage estimates to biomass using data collected in the field. Our results suggest that, on the morning of 12 December 2018, the Canada Stream system contained more than 3,800 kg of photosynthetically active carbon. Extrapolating our unmixing results to the entirety of the Fryxell basin of Taylor Valley, Antarctica, we model the presence of more than 750,000 kg of photosynthetically active carbon across the landscape and carbon fixation rates roughly equivalent to five hectares of tropical rainforest. The ability to spatially and temporally quantify the amount of photosynthetically active biomass using remote sensing data in the MDV of Antarctica is a revolutionary development that will help elucidate the ecological drivers and environmental responses in this cold desert landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.