Abstract
SummaryCounting by weighing is often more efficient than counting manually, which is time consuming and prone to human errors, especially when the number of items (e.g. plant seeds, printed labels or coins) is large. Papers in the statistical literature have focused on how to count, by weighing, a random number of items that is close to a prespecified number in some sense. The paper considers the new problem, arising from a consultation with a company, of making inference about the number of 1p coins in a bag with known weight for infinitely many bags, by using the estimated distribution of coin weight from one calibration data set only. Specifically, a lower confidence bound has been constructed on the number of 1p coins for each of infinitely many future bags of 1p coins, as required by the company. As the same calibration data set is used repeatedly in the construction of all these lower confidence bounds, the interpretation of coverage frequency of the lower confidence bounds that is proposed is different from that of a usual confidence set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.