Abstract

We study the problem of counting answers to unions of conjunctive queries (UCQs) under structural restrictions on the input query. Concretely, given a class C of UCQs, the problem #UCQ (C) provides as input a UCQ Ψ ∈ C and a database D and the problem is to compute the number of answers of Ψ in D. Chen and Mengel [PODS'16] have shown that for any recursively enumerable class C, the problem #UCQ (C) is either fixed-parameter tractable or hard for one of the parameterised complexity classes W[1] or #W[1]. However, their tractability criterion is unwieldy in the sense that, given any concrete class C of UCQs, it is not easy to determine how hard it is to count answers to queries in C. Moreover, given a single specific UCQ Ψ, it is not easy to determine how hard it is to count answers to Ψ. In this work, we address the question of finding a natural tractability criterion: The combined conjunctive query of a UCQ Ψ=φ 1 ∨ ... ∨ φ l is the conjunctive query ^ Ψ = φ_1 ∧ ... ∧ φ l . We show that under natural closure properties of C, the problem #UCQ (C) is fixed-parameter tractable if and only if the combined conjunctive queries of UCQs in C, and their contracts, have bounded treewidth. A contract of a conjunctive query is an augmented structure, taking into account how the quantified variables are connected to the free variables --- if all variables are free, then a conjunctive query is equal to its contract; in this special case the criterion for fixed-parameter tractability of #UCQ (C) thus simplifies to the combined queries having bounded treewidth. Finally, we give evidence that a closure property on C is necessary for obtaining a natural tractability criterion: We show that even for a single UCQ Ψ, the meta problem of deciding whether #UCQ (Ψ) can be solved in time O(|D| d ) is NP-hard for any fixed d ≥ 1. Moreover, we prove that a known exponential-time algorithm for solving the meta problem is optimal under assumptions from fine-grained complexity theory. As a corollary of our reduction, we also establish that approximating the Weisfeiler-Leman-Dimension of a UCQ is NP-hard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.