Abstract
Counting and enumerating maximal and maximum independent sets are well-studied problems in graph theory. In this paper we introduce methods to count and enumerate maximal/maximum independent sets in threshold graphs and k-threshold graphs and improve former results for these problems. The results can be applied to combinatorial optimization problems, and in particular to different variations of the knapsack problem. As feasible solutions for instances of those problems correspond to independent sets in threshold graphs and k-threshold graphs, we obtain polynomial time results for special knapsack and multidimensional knapsack instances. Also, we show lower and upper bounds for the number of necessary bins in several bin packing problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.