Abstract

We show that the maximum number of pairwise nonoverlapping $k$-rich lenses (lenses formed by at least $k$ circles) in an arrangement of $n$ circles in the plane is $O(n^{3/2}\log(n / k^3)/k^{5/2} + n/k)$, and the sum of the degrees of the lenses of such a family (where the degree of a lens is the number of circles that form it) is $O(n^{3/2}\log(n/k^3)/k^{3/2} + n)$. Two independent proofs of these bounds are given, each interesting in its own right (so we believe). The second proof gives a bound that is weaker by a polylogarithmic factor. We then show that these bounds lead to the known bound of Agarwal et al. [J. ACM, 51 (2004), pp. 139--186] and Marcus and Tardos [J. Combin. Theory Ser. A, 113 (2006), pp. 675--691] on the number of point-circle incidences in the plane. Extensions to families of more general algebraic curves and some other related problems are also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call