Abstract

Dynamical behavior of counterpropagating (CP) incoherent laser beams in photorefractive crystals is investigated. We perform experimental study displaying rich dynamics of three-dimensional CP optical solitons and formulate theory capable of capturing such dynamics. We find that our numerical simulations qualitatively agree with experimental findings for various CP beam structures. We also study numerically CP vortices in photorefractive crystals, in both space and time. The propagation of more complex CP beam arrangements, such as arrays of vortices, is also considered, and the transition from a few-beam propagation behavior to the transverse pattern formation dynamics is followed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.