Abstract

AbstractPhysics of counterpropagating optical beams and spatial optical solitons is reviewed, including the formation of stationary states and spatiotemporal instabilities. First, several models describing the evolution and interactions between optical beams and spatial solitons are discussed, that propagate in opposite directions in nonlinear media. It is shown that coherent collisions between counterpropagating beams give rise to an interesting focusing mechanism resulting from the interference between the beams, and that interactions between such beams are insensitive to the relative phase between them. Second, recent experimental observations of the counterpropagation effects and instabilities in waveguides and bulk geometries, as well as in one‐ and two‐dimensional photonic lattices are discussed. A variety of different generalizations of this concept are summarized, including the counterpropagating beams of complex structures, such as multipole beams and optical vortices, as well as the beams in different media, such as photorefractive materials and liquid crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.