Abstract

A series of laboratory flume experiments were done in a large-scale 180° bend with non- cohesive sediment to find optimal or effective protection works at a bend. Detailed study of the scour and flow field dynamics with and without protection works was done. Spatially dense, high frequency velocity data were collected and analyzed to describe the pattern and magnitude of three-dimensional (3D) velocity throughout the bend. Characterizing the role of flow field dynamics on the pattern of deposition and erosion through experimental measurements provided valuable data about how such flow features contribute to scour and about the performance of the protection works. From the experimental results, it is revealed that for a perennial river it is not possible to protect from scour either with riprap or with submerged vanes alone. Protection from scour at a bend can be achieved with proper combination of these two works. First, submerged vanes can protect the toe, and, second, riprap can protect the upper part of the slope if it is not damaged through toe erosion. The experiments convincingly demonstrate the efficiency of this bank protection technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.