Abstract

Although protonated polyoxometalates (POMs) are promising hole-transporting layer (HTL) materials for optoelectronic devices owing to their excellent hole collection/injection property, pH neutrality, and noncorrosiveness, POMs are seldom used as high-performance HTL materials. Herein, we designed and synthesized a series of mixed-additive POMs with pH-neutral counterions (NH4+, K+, and Na+) as HTL materials. X-ray photoelectron spectroscopy and single-crystal X-ray analyses indicated that the use of the lacunary heteropolyanion [P2W15O56]12- as an intermediate ensured successful incorporation of the counterions into the mixed-addenda POMs without causing deterioration of the POM frameworks. The hole-transporting layer performance of POM-NH4, which was characterized by a high work function and good conductivity and could be prepared using a low-cost method surpassed those of its protonated counterpart POM-4 and many classic HTL materials. An organic solar cell (OSC) modified with POM-NH4 delivered a power conversion efficiency of 18.0%, which was the highest photovoltaic efficiency achieved by POM-based OSCs to date. Moreover, an HTL material based on POM-NH4 reduced the turn-on voltage of an organic light-emitting diode from 4.2 to 3.2 V. The results of this study suggest that POMs are promising alternatives to the classic HTL materials owing to their excellent hole-collection ability, low costs, neutral nature, and high-chemical stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.