Abstract
We show that countercations exert a remarkable influence on the ability of anionic cobaltate salts to catalyze challenging alkene hydrogenations. An evaluation of the catalytic properties of [Cat][Co(η4 -cod)2 ] (Cat=K (1), Na (2), Li (3), (Dep nacnac)Mg (4), and N(n Bu)4 (5); cod=1,5-cyclooctadiene, Dep nacnac={2,6-Et2 C6 H3 NC(CH3 )}2 CH)]) demonstrated that the lithium salt 3 and magnesium salt 4 drastically outperform the other catalysts. Complex 4 was the most active catalyst, which readily promotes the hydrogenation of highly congested alkenes under mild conditions. A plausible catalytic mechanism is proposed based on density functional theory (DFT) investigations. Furthermore, combined molecular dynamics (MD) simulation and DFT studies were used to examine the turnover-limiting migratory insertion step. The results of these studies suggest an active co-catalytic role of the counterion in the hydrogenation reaction through the coordination to cobalt hydride intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.